ORIGINAL PAPER

Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting

Prabeer Barpanda • Rémi Dedryvère • Michael Deschamps • Charles Delacourt • Marine Reynaud • Atsuo Yamada • Jean-Marie Tarascon

Received: 1 August 2011 / Revised: 7 November 2011 / Accepted: 10 November 2011 / Published online: 30 November 2011 © Springer-Verlag 2011

Abstract Recently unveiled 'alkali metal fluorosulphate (AMSO₄F)' class of compounds offers promising electrochemical and transport properties. Registering conductivity value as high as 10^{-7} S cm⁻¹ in NaMSO₄F phases, we explored the fluorosulphate group to design novel compounds with high Li-ion conductivity suitable for solid electrolyte applications. In the process, we produced sillimanite-structured LiZnSO₄F by low temperature synthesis ($T \le 300$ °C). Examining this phase, we accidentally discovered the possibility of improving the ionic conductivity of poor conductors by forming a monolayer of ionic

P. Barpanda · C. Delacourt · M. Reynaud · J.-M. Tarascon Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 6007, Université de Picardie Jules Verne, 33, Rue Saint Leu, Amiens Cedex 80039, France

P. Barpanda (⊠) · A. Yamada
Department of Chemical System Engineering, The University of Tokyo,
Building 5-607, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
e-mail: prabeer@chemsys.t.u-tokyo.ac.jp

R. Dedryvère
IPREM-ECP, University of Pau,
Hélioparc Pau Pyrénées, 2 av. Pierre Angot,
64000 Pau, France

M. Deschamps
Cenre de Recherches sur les Materiaux a Hautes Temperatures, CNRS UPR 3079,
1D Avenue de la Recherche Scientifique, Orléans Cedex 45071, France

J.-M. Tarascon Collège de France, 11 Place Marcelin Berthelot, Paris 745005, France liquid at their particle surface. This phenomenon was studied by solid-state NMR, XPS and AC impedance spectroscopy techniques. Further, similar trends were noticed in other fluorosulphate materials like tavorite $LiCoSO_4F$ and triplite $LiMnSO_4F$. With this study, we propose 'ionic liquid grafting' as an interfacial route to enable good Li-ion conductivity in otherwise poor conducting ceramics.

Keywords Conductivity · Fluorosulphates · Ionic liquid grafting · Solid electrolyte

Introduction

'Mobile energy supply' is increasingly becoming an integral part of modern life heavily relying on portable electronics, communication devices and automotive vehicles. Li-ion batteries, with their high gravimetric and volumetric energy density, are front runners in this sector. Lithium-ion battery technology got kick started with oxidebased ceramics (e.g., LiCoO₂) in the early 90s [1]. Later in 1997, olivine LiFePO₄ was introduced as a possible cathode material [2], which opened up the whole new world of 'polyanionic compounds', paving the way for the discovery of novel cathode materials such as Li₂MSiO₄, LiMBO₃, LiMPO₄F, Li₂MP₂O₇, etc. [3–6]. Exploring the polyanion chemistry, our group discovered a new cathode material, LiFeSO₄F, operating at 3.6 V (vs. Li/Li^+) with a reversible capacity in excess of 130 mAh g^{-1} [7]. It unraveled 'alkali metal fluorosulphates (AMSO₄F)' as a new family of compounds with potential electrochemical applications. Subsequent works on Li-based and Na-based fluorosulphate phases were realized within a year [8, 9]. Particularly, NaMSO₄F phases having tavorite structure

(space group $P2_1/c$) showed high pressed pellet (green density ~77%) room temperature conductivity of ~10⁻⁷ S cm⁻¹. A higher value of intrinsic conductivity can be obtained with the realization of fully dense pellets. Although this conductivity value is lower than current generation solid-state electrolytes [10], it encouraged us to design other AMSO₄F compounds with higher order conductivity suitable for solid electrolyte application in all-solid-state battery technology.

This sets our goal to make a fluorosulphate-based solidelectrolyte material. It should address three major criteria: (i) excellent ionic conductivity, (ii) wide electrochemical stability window, and (iii) feasibility of low temperature synthesis as AMSO₄F compounds are prone to decomposition at high temperature. We zeroed in to synthesize LiZnSO₄F as its precursor ZnSO₄·H₂O is isostructural to other MSO₄·H₂O precursors and Zn is electrochemically inactive (hence, stable). Using a two-step low temperature synthesis method (ionic liquid or solid-state synthesis) [8], we successfully produced sillimanite-structured LiZnSO₄F. Performing conductivity measurement, we accidentally discovered that the involvement of ionic liquids during synthesis led to six orders of improvement in effective ionic conductivity of LiZnSO₄F [11]. Combining several techniques such as solid-state Nuclear Magnetic Resonance (SS-NMR), X-ray Photoelectron Spectroscopy (XPS) and AC impedance spectroscopy, here we report a detailed spectroscopy analysis of ionic liquid-prepared LiZnSO₄F samples. The presence of a thin layer of ionic liquid attached to particles' surface (i.e., ionic liquid grafting) led to the formation of ceramic-ionic liquid composites. The surface ionic liquid graft, being slightly Li⁺-rich, was found to be responsible for the conductivity improvement. Similar trends were also observed in some other isostructural LiMSO₄F phases. The transport properties of ceramic materials can be improved by forming a conducting coating at their interface (e.g., carbon coating [12]). The current paper presents 'ionic liquid grafting' as a surface modification to enable the Li-ion conductivity of inherently poor conducting ceramics, which can be applied in realizing next generation solid electrolytes.

Experimental

Synthesis of alkali metal fluorosulphates

The ZnSO₄·H₂O monohydrate precursor was prepared from commercially procured ZnSO₄·7H₂O by removing six-units of extra structural water by annealing it at 150 °C for 1 h either by (i) primary vacuum, i.e., ceramic route (ZnSO₄·H₂O-C) or (ii) immersing inside EMI-TFSI ionic liquid, i.e., IL route (ZnSO₄·H₂O-IL). Following, LiZ- nSO₄F was prepared by (i) mixing LiF and ZnSO₄·H₂O in 1:1 molar ratio, (ii) pressing the precursor powder (at 10 bars) to form pellets, (iii) loading the pellets inside a Teflon-lined Bomb Parr reactor, and (iv) heating the Parr reactor at 300 °C for 30–40 h (heating rate=2 °C/min) before cooling down to room temperature. Depending on the precursor, the final products were abbreviated as LiZnSO₄F-C or LiZnSO₄F-IL. Following this procedure, LiCoSO₄F and LiMnSO₄F was prepared at 300 °C by using CoSO₄·H₂O and MnSO₄·H₂O precursors respectively. Xray powder patterns were collected with a Bruker D8-Advantage powder diffractometer using Cu-Ka source $(\lambda_1 = 1.5403 \text{ Å})$ (operating at 40 mA, 40 kV) and a LynxEye detector. Crystal structures were solved by Rietveld refinement using the FullProf program [13] and the structures were drawn using the Vesta software [14]. SEM images were obtained via an FEI Quanta 200-F SEM unit in low vacuum mode (operating voltage 20 kV).

Spectroscopy characterizations of fluorosulphate samples

AC impedance spectroscopy was conducted using a Biologic VMP3 unit. The fluorosulphate samples were pressed combining uniaxial (~10 bars) and isostatic (~2,500 bars) press to form dense pellets (~77% theoretical density). Ionically blocking electrodes were prepared by gold sputtering on both faces of the pellets. Ionic conductivity was measured over the temperature range of RT–140 °C by employing ac impedance spectroscopy (signal: 200 kHz–10 mHz). Li-ion mobility in these samples was further tested by applying a fixed voltage (25–100 mV) and recording the DC current in the pellets sandwiched between two sheets of PEO (saturated in 1 M LiClO₄) and Li-foils.

The room-temperature solid-state NMR study was performed by using a 7-T Bruker Avance NMR spectrometer operating at 300 MHz for ¹H, 117 MHz for ⁷Li and 282 MHz for ¹⁹F, respectively. We used a 1.3-mm double resonance probe for ¹H and ¹⁹F (operating at a 60-kHz MAS rate) and a 4-mm double resonance probe for ⁷Li (operating at a 14-kHz MAS rate). Recycling delay value was set to 120 s (for ¹H and ¹⁹F) and 1 s (⁷Li), respectively. For ¹H and ¹⁹F, the RF fields for the 90° excitation pulses were set to 150 and 200 kHz, respectively and four transients have been recorded. Sixteen transients were recorded for ⁷Li with a 1.1- μ s long $\pi/12$ excitation pulse. The chemical shifts were referenced with 4-acetophenone at $\delta = -107$ ppm for ¹⁹F, TMS at 0 ppm for ¹H and 1 M LiCl at 0 ppm for ⁷Li. The variable temperature NMR spectra were realized on a 9.4-T Bruker Avance NMR spectrometer operating at 400 MHz for ¹H, 155 MHz for ⁷Li and 376 MHz for ¹⁹F, respectively, using a 4-mm Bruker WVT probe with liquid nitrogen cooling and using a 5-kHz and 10-kHz MAS rate at low temperatures and high temperFig. 1 Transport properties of LiZnSO₄F-C and LiZnSO₄F-IL samples. **a** Comparative Nyquist plots showing a large semicircle for LiZnSO₄F-C and a large Warburg diffusion line for LiZnSO₄F-IL materials. The *inset* presents the equivalent circuit diagram comprising of a resistance (*R*1) and a constant phase element (*CPE*1) in parallel connection with a Warburg resistance (*W*1). **b** Arrhenius plots of ac conductivity showing six-order increment in the conductivity in the case of LiZnSO₄F-IL (~10⁻⁵ S cm⁻¹) in comparison to LiZnSO₄F-C (~10⁻¹¹ S cm⁻¹). **c** Polarization DC current measurement (at different voltages) of LiZnSO₄F-IL and LiZnSO₄F-C pellets sandwiched between PEO:LiClO₄ sheets and Li foils. The detail Swagelok architecture is shown in the *inset*

atures, respectively. Sixteen transients were recorded for ⁷Li with a 3.9-µs long $\pi/12$ excitation pulse. The RF excitation field for ¹⁹F was set at 93 kHz, and in both cases, the recovery delay was 10 s. The temperature was calibrated using the ²⁰⁷Pb chemical shift of PbNO₃ [15].

XPS analysis was carried out using a Kratos Axis Ultra spectrometer using focused monochromatized Al K α radiation ($h\nu$ =1,486.6 eV). The spectrometer was calibrated using the photoemission line Ag 3 d_{5/2} (binding energy= 368.3 eV) and the pressure in the analysis chamber was maintained at 5×10⁻⁷ Pa. The analyzed area of the samples was 300×700 µm². Core peaks were recorded with a 20-eV constant pass energy. Due care was taken to avoid moisture/ air exposure to test specimens. The XPS spectrometer was directly connected through a transfer chamber to an argon dry box. Core peaks were analyzed using a nonlinear Shirley-type background and peak positions and areas were obtained by weighted least-square fitting of model curves (70% Gaussian+30% Lorentzian) to the experimental data.

Results and discussion

To gauge the feasibility of using low-temperaturesynthesized LiZnSO₄F as solid electrolyte, its ionic conductivity was analyzed by AC impedance spectroscopy. As shown in Fig. 1a, typical impedance spectrum of LiZnSO₄F-IL was dominated by a large Warburg diffusion line at nearly 45°, characteristic of ionic conductors. On the other hand, the impedance spectra of LiZnSO₄F-C sample consisted of a very large semi-circle with a negligible Warburg diffusion tail, hinting at rather low conductivity. The impedance study was conducted over a temperature range of RT-140 °C by repeating heating and cooling steps. The resulting Arrhenius plot is shown in Fig. 1b. A staggering six-order-of-magnitude difference was observed in the conductivity values of LiZnSO₄F-IL ($\sim 10^{-5}$ S cm⁻¹) and LiZnSO₄F-C ($\sim 10^{-11}$ S cm⁻¹) pellets. These values were reproducible in several measurements. Subsequently, we performed a DC polarization measurement in LiZnSO₄F pellets in a special Swagelok architecture allowing only for Li⁺ current as illustrated in Fig. 1c (inset). For different

external voltages, we were unable to record any current in $LiZnSO_4F-C$ sample affirming the rather insulating behavior. However, in case of $LiZnSO_4F-IL$ sample, noticeable Li^+ current values were recorded signaling good Li-ion conductivity (Fig. 1c). Both the AC impedance spectrosco-

py and the DC polarization study were in perfect agreement showing a large difference in ionic conductivity of $LiZnSO_4F$ -C and $LiZnSO_4F$ -IL.

In our earlier work, we measured the conductivity values of Li-based fluorosulphates in the range of 10^{-11} S cm⁻¹ [7]. Thus, the conductivity value of LiZnSO₄F-C is reasonable. However, the high conductivity value in the

case of LiZnSO₄F-IL was a surprise, which can arise either due to structure or surface modification. LiZnSO₄F stabilizes into a different structure (orthorhombic, s.g. *Pnma* [11]) than other LiMSO₄F compounds (triclinic, s.g. *P-1*), which leads to a one-dimensional diffusion of Li for LiZnSO₄F as compared to a three-dimensional one for LiMSO₄F phases. It leads to the expectation of having a

Fig. 2 Solid-state NMR ⁷Li (**a**, **c**), ¹⁹F (**b**, **d**, **f**) and ¹H (**e**) spectra. The spectra have been recorded between 312 and 396 K at 10 kHz MAS (**a**, **b**), while the spectra at low temperatures (**c**, **d**) between 217 and 234 K had to be recorded at 5 kHz MAS, both for LiZnSO₄F-IL. The ¹H and ¹⁹F fast MAS (60 kHz) spectra (**e**, **f**) have been recorded without temperature regulation (\approx 320–340 K in the rotor) for both LiZnSO₄F-IL and LiZnSO₄F-C samples. No change in the ⁷Li NMR spectrum is observed upon heating/cooling (**a**, **c**), seemingly indicating no change in the bulk LiZnSO₄F lithium mobility. The mobile lithium atoms are not detected by NMR in these spectra. For ¹⁹F

NMR, no change is detected upon heating (**b**); however, the peak stemming from TFSI (-80 ppm) is considerably broadened below 220–230 K (**d**) indicating that the ionic liquid motions are frozen below these temperatures. A comparison between the high resolution ¹H (**e**) and ¹⁹F (**f**) NMR spectra of LiZnSO₄F-IL and LiZnSO₄F-C clearly shows the presence of EMI and TFSI molecules in the samples (**e**, **f**), together with some residual water, either in LiZnSO₄F-C (≈ 6.5 ppm) or in the grafted ionic liquid layer for LiZnSO₄F-IL (≈ 1.8 ppm) (**e**). Some LiF is also detected by ¹⁹F NMR (**b**, **f**)

lower ionic conductivity for the sillimanite $LiZnSO_4F$ than the tavorite $LiMSO_4F$ phases, the opposite of what we observed [7, 8, 11, 16]. So, solely from structural perspective, the high value of conductivity is difficult to explain. Thus, we turned our attention to probe possible surface modification in case of $LiZnSO_4F$ -IL material.

First, we employed solid-state NMR spectroscopy on LiZnSO₄F-IL powder, which was feasible owing to the nonparamagnetic Zn center. ⁷Li and ¹⁹F spectra were obtained independently at different temperatures using a cryogenic set up. The ⁷Li spectrum showed only one kind of Li species in the LiZnSO₄F lattice (Fig. 2a). No change was detected for lithium when the temperature was varied between 217 and 396 K (Fig. 2a and c). In the ¹⁹F spectrum, the ¹⁹F signal from the bulk LiZnSO₄F-IL (-193 ppm) shows spinning sidebands induced by Magic Angle Spinning (MAS) when the MAS rate is lower than the chemical shift anisotropy (CSA). In addition to this signal, a weak LiF signal is observed around -204 ppm. Interestingly, a narrow signal appears at -80 ppm in LiZnSO₄F-IL (Fig. 2b, d, and f). This mobile species was assigned to the CF₃ group that arises from the TFSI anion of ionic liquid used in this work to prepare ZnSO₄·H₂O-IL precursor. In the case of LiZnSO₄F-C sample, this extra peak (~80 ppm) was absent with only the peak arising from the F lattice atoms (Fig. 2f). The peak from TFSI shows strong broadening when the sample is cooled down to 220-230 K, indicating that the TFSI anion motion is considerably reduced below this temperature. Also, the ¹H NMR spectra of LiZnSO₄F powders showed several extra H peaks in case of LiZnSO₄F-IL sample, which were solely assigned to the H-species present in the EMI-cation of the ionic liquid (Fig. 2e). Overall, the NMR investigation revealed the possible surface contamination of LiZnSO₄F-IL product by a slight amount of ionic liquid (EMI-TFSI).

We further pursued the surface analysis of LiZnSO₄F sample by XPS analysis. Figure 3 shows C 1 s, F 1 s and N 1 s core peaks of LiZnSO₄F-IL and LiZnSO₄F-C samples. For LiZnSO₄F-IL, all spectra provide evidence for the presence of the ionic liquid at the surface of the sample. C 1 s peak at 292.8 eV and F 1 s peak at 688.6 eV are clearly assigned to CF₃ groups of TFSI-anion. The three kinds of environments of carbon in the EMI-cation (C-C, C-N and N-C-N) are also detected in the C 1 s spectrum of LiZnSO₄F-IL. Moreover, EMI-cation and TFSI-anion show very characteristic N 1 s signatures in the N 1 s spectrum (399.4 eV and 401.8 eV, respectively). Taking into account that XPS measurement is carried out on the extreme surface of the samples (5 nm), quantitative analysis reveals that the amount of remaining ionic liquid at the surface of the LiZnSO₄F-IL sample is about 60 at.% (i.e., the ionic liquid layer is ~3 nm). Note that a third weak peak can be detected in the N 1 s spectrum of LiZnSO₄F-IL (400.6 eV) that could be attributed to some decomposition product of the ionic liquid.

With the NMR and XPS analysis, we confirmed the presence of some remnant ionic liquid at the surface of $LiZnSO_4F-IL$ product. It was not obvious as the $ZnSO_4\cdot H_2O-IL$ precursor was heat-treated mildly inside ionic liquid (at 150 °C for just 1 h) and was later washed several times with organic solvents (e.g., ethyl acetate) capable of dissolving ionic liquids. In spite of several washing steps and final heat treatment with LiF (at 300 °C for 30–40 h), the presence of ionic liquid in the LiZnSO₄F-IL product suggests strong binding of layers of ionic liquid on the surface of LiZnSO₄F particles. From the NMR signal, we could roughly quantify the amount of ionic liquid present. A quick back-of-envelope calculation estimated an 8–15-nm monolayer of ionic liquid (EMI-TFSI) covering the micrometric grains of LiZnSO₄F, which is

Fig. 3 XPS spectra probing the a C 1 s, b F 1 s and c N 1 s peaks in the case of LiZnSO₄F-C and LiZnSO₄F-IL powder samples. Some extra peaks arise in LiZnSO₄F-IL sample, which can be assigned to TFSI-anion and EMI-cation. This confirms the presence of the ionic liquid (EMI-TFSI) in the final LiZnSO₄F-IL product

overestimated from what we deduced by XPS. Inhomogeneity in the surface coverage could be at the origin of such a difference. Here, we would like to mention that we failed in our attempts to capture direct evidence of ionic liquid graft on LiZnSO₄F particles by (SEM/TEM) microscopy as the ionic liquid containing fluorosulphate samples were unstable and were prone to decomposition under high voltage electron beam.

This led us to the model of 'ionic liquid grafting' as illustrated in Fig. 4. During the heat treatment of ZnSO₄·7H₂O precursor submerged in the EMI-TFSI ionic liquid bath, the hydrophobicity of ionic liquid pacify the kinetic of removal of extra structural water. During this process, some ionic liquid is attached to the surface of ZnSO₄·H₂O monohydrate precursor. Being a surface phenomenon, this ionic liquid grafting essentially depends on wettability, catalytic/chemical reactivity as well as surface truncation of precursor solid and the type of ionic liquid. This ionic liquid graft is permeable to H_2O , Li^+ and F⁻ species, so it facilitates the double ion exchange reaction (i.e., H⁺ by Li⁺ and OH⁻ by F⁻) at 300 °C forming LiZnSO₄F product. As it is a topotactic reaction involving minimal volume change [7, 8], the grafted ionic liquid layer remains intact in the final product. As ionic liquids are capable of solvating Li⁺, it is possible for the ionic liquid layer to trap some Li⁺-ion either from excess LiF precursor or from the outer surface of LiZnSO₄F. So, a final model can be visualized as slight Li-deficient LiZnSO₄F particles wrapped up by a Li-rich ionic liquid graft, providing a percolation network for easy Li-ion mobility.

Next, we tried to generalize the concept of IL-grafting induced conductivity enhancement in other members of the

Fig. 5 Generalization of the concept of 'ionic liquid grafting' as a way to improve Li-ion conductivity in various anisostructural alkali metal fluorosulphates. Similar phenomena were marked in a sillimanite LiZnSO₄F (*left column*), b tavorite LiCoSO₄F (*center column*) and c triplite LiMnSO₄F (*right column*). In each case, the XRD pattern, crystal structure, representative SEM image (showing micrometric particles) and Arrhenius plots showing ac conductivity is given. The presence of ionic liquid grafting at the particle interface triggers six-fold improvement in ac conductivity in each case

Li-metal fluorosulphate family. In order to show that the ILgrafting effect is independent of crystal structure, we chose anisostructural tavorite LiCoSO₄F (triclinic, P-1) and triplite LiMnSO₄F (monoclinic, $P2_1/c$). These phases were prepared using $MSO_4 \cdot H_2O$ (M = Co, Mn) made both by ionic liquid and ceramic route. The structural and transport properties of these materials are summarized in Fig. 5. The structural details of LiCoSO₄F and LiMnSO₄F phases are given elsewhere [8, 16]. In each case, we obtained nearly uniform micrometric particles ($\sim 1 \mu m$). Interestingly, we noticed six-order-of-magnitude difference in ionic conductivity values of LiMSO₄F-C (~10⁻¹¹ S cm⁻¹) and LiMSO₄F-IL ($\sim 10^{-5}$ S cm⁻¹) samples in each case. While LiMSO₄F-IL samples had low activation energy (~0.25-0.3 eV), the LiMSO₄F-C samples had high activation energy (~0.6-0.75 eV). It reassures forming a Li-ion conducting ionic liquid graft at their inter-granular interface can enable the ionic conductivity of insulating fluorosulphate ceramics. Nevertheless, we would like to stress that we did not detect the same effect for tavorite LiFeSO₄F, in which case the ionic conductivity value remained same ($\sim 10^{-11}$ S cm⁻¹) independent of the

Fig. 4 Schematic flow diagram depicting the formation of monolayer of ionic liquid grafting at the interface of ZnSO₄·H₂O monohydrate precursor during dehydration. This ionic liquid graft is permeable to Li, F, H and OH species so as to allow the simultaneous departure of H2O and the ingression of LiF. The 'ionic liquid grafting' thus remains intact in final LiZnSO₄F product, which is slightly Li-rich and forms an easy percolation network for Li⁺ ion movement

processing routes (LiFeSO₄F-IL and LiFeSO₄F-C). Though we do not have complete understanding of these results, presumably the ineffective formation of interfacial ionic liquid grafting is at the root of such behavior. The feasibility and factors controlling the effective formation of ionic liquid grafting can shed light on these intricate issues.

This kind of conductivity improvement owing to modified interface does not come as a surprise as several such routes have been reported in the field of 'solid-state ionics' as illustrated in Fig. 6. For example, olivine LiFePO₄, one the most sought after cathode material offering very high capacity at safe operating voltage of 3.45 V suffers from low ionic conductivity ($\sim 10^{-12}$ S cm⁻¹), thus, limiting its rate capability. A recent report proves the transport properties of LiFePO₄ can be improved by

forming a thin (\sim 5 nm) interface layer of Fe³⁺-containing amorphous Li₄P₂O₇-like phase around each grain [17]. As a result, ultrafast charging and discharging rate was realized in LiFePO₄ cathode with excellent cycling stability at room temperature. Another such example is the manifold improvement in the conductivity of fluoride materials (BaF₂/ CaF₂) by formation of interfacial 'space charge'. The degree of this space charge layer can enhance the room temperature conductivity by three orders of magnitude [18]. Yet another interfacial modification method, namely 'ionic liquid tethering', was recently reported showing the attachment of ionic liquid molecules in ceramic oxides (TiO₂ or ZrO₂) can improve its mechanical strength as well as conductivity by two orders of magnitude [19]. Drawing parallel to these methods, we propose 'ionic liquid grafting' as an attractive way of

Fig. 6 The transport properties of ceramic materials can be improved by forming a thin interfacial layer of conducting species. One such method is \mathbf{a} ionic liquid grafting, which is conceptually analogous to

several previously reported methods like **b** amorphous conducting coating of LiFePO₄ [17], **c** formation of space charge layer [17], and **d** ionic liquid tethering [18]

interface engineering to enable the transport properties of inherently insulating materials.

Conclusions

With the principal goal to design a novel Li-based fluorosulphate as a solid-electrolyte material, we synthesized the sillimanite-structured LiZnSO₄F compound. Though it had very low conductivity ($\sim 10^{-11}$ S cm⁻¹), we accidentally discovered the possibility of manifold improvement in conductivity of LiZnSO₄F ceramic by forming a monolayer of ionic liquid at its interface. Using several spectroscopy techniques, we proved the existence of ionic liquid grafted at the particle surface and its positive effect in improving the ionic conductivity. This phenomenon was successfully extended to other anisostructural fluorosulphate members. Future research may focus on further understanding and controlling of ionic liquid graft formation at grain interface, which can extend this method to conventional oxide and polyanionic solid electrolytes. 'Ionic liquid grafting' can be an alternate method to develop ceramic-ionic liquid composites with high ionic conductivity approaching those needed for solid-electrolyte applications.

Acknowledgements The scientific assistance of Dominique Massiot (Orleans) and Danielle Gonbeau (Pau) is acknowledged. We thank ALISTORE-ERI for the financial support. The first author (PB) is grateful to the Japan Society for the Promotion of Science for a JSPS Fellowship at the University of Tokyo.

References

- Mizushima K, Jones PC, Wiseman PC, Goodenough JB (1980) Mater Res Bull 15:783–789
- Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194
- Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochem Commun 7:156–160
- Yamada A, Iwane N, Harada Y, Nishimura S, Koyama Y, Tanaka I (2010) Adv Mater 22:3583–3587
- Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Electrochem Solid-State Lett 13:A43–A47
- Nishimura S, Nakamura M, Natsui R, Yamada A (2010) J Am Chem Soc 132:13596–13597
- 7. Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) Nat Mater 9:68–74
- Barpanda P, Recham N, Chotard JN, Djellab K, Armand M, Tarascon JM (2010) J Mater Chem 20:1659–1668
- Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Inorg Chem 49:7401–7413
- 10. Sorokin NI, Sobolev BP (2007) Crystallogr Rep 52:842-863
- Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM (2011) Angew Chem Int Ed 50:2526–2531
- Armand M, Gauthier M, Magnan JF, Ravet N (2004) US Patent 033:360
- 13. Rodriguez-Carvajal J (2001) CPD Newslett 26:12-19
- 14. Momma K, Izumi F (2008) J Appl Crystallogr 41:653–658
- 15. Bielecki A, Burum DP (1995) J Magn Reson A 116:215-220
- Barpanda P, Ati M, Melot B, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr S, Jumas JC, Tarascon JM (2011) Nat Mater 10:772–779
- 17. Kang B, Ceder G (2009) Nature 458:190-193
- 18. Sata N, Eberman K, Ebert K, Maier J (2000) Nature 408:946-949
- 19. Schaefer JL, Moganty SS, Archer LA (2011) J Mater Chem 21:10094–10101